Los números primos del 1 al 200 son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199. 

En este artículo, conoceremos un poco sobre los números primos. Empezaremos con una descripción de los números primos y miraremos algunas de sus propiedades. También, usaremos una tabla para entender cómo podemos encontrar números primos.

ÁLGEBRA
ejercicios de numeros primos y compuestos

Relevante para

Conocer los números primos del 1 al 200.

Ver números primos

ÁLGEBRA
ejercicios de numeros primos y compuestos

Relevante para

Conocer los números primos del 1 al 200.

Ver números primos

¿Qué son los números primos?

Los números primos son definidos como números enteros positivos que tienen exactamente dos factores. Los números que tienen más de dos factores son denominados números compuestos. Si es que tenemos que p es un número primo, entonces, por definición sólo tiene dos factores que son el 1 y p.

Los diez primeros números primos

Los diez primeros números primos son 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

EJEMPLOS

  • El número 6 no es un número primo ya tiene los factores 1, 2, 3 y 6.
  • El número 7 sí es un número primo ya que sólo tiene los factores 1 y 7.
  • El número 16 no es un número primo ya que tiene los factores 1, 2, 4, 8, 16.
  • El número 17 sí es un número primo ya que sólo tiene los factores 1 y 17.

¿Es el 1 un número primo?

El 1 no es un número primo ya que todos los números primos son definidos como números enteros positivos que sólo tienen dos factores.

El número 1 sólo tiene un factor que es sí mismo, por lo tanto, el 1 no es considerado un número primo. Si es que el 1 fuera considerado un número primo, tendríamos que redefinir algunas propiedades matemáticas.

Ten en cuenta que el 1 tampoco es un número compuesto ya que no tiene más factores a parte de sí mismo.


Propiedades de los números primos

Las siguientes  son algunas de las propiedades de los números primos:

  • Cada uno de los números mayores a 1 pueden ser divididos por lo menos por un número primo sin dejar residuo.
  • Todos los números enteros positivos mayores que 2 pueden ser expresados como la suma de dos números primos.
  • Todos los números primos son impares con la excepción del 2. Por lo tanto, el 2 es el único número primo que es par.
  • Todos los números compuestos pueden ser factorizados en factores primos y todos son únicos.

Tabla de números primos del 1 al 100

Para visualizar los primeros números primos hasta el 100, podemos formar una tabla con todos los números y cancelar los números compuestos.

Para encontrar los números compuestos, buscamos todos los números que son múltiplos del 2, 3, 5, 7 y 11.

números primos del 1 al 200

Dado que hemos eliminado todos los números compuestos, sólo tenemos los números primos restantes. La siguiente lista de números primos del 1 al 100: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

No tienes que memorizar todos los números primos, sin embargo, es aconsejable memorizar los primeros números primos como 2, 3, 5, 7, 11, 13.


Números primos del 1 al 200

Dado que ya obtuvimos una lista con los primeros números primos hasta el 100, ahora podemos formar una lista con los números primos del 1 al 200:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199


Ejemplos de números primos

Los siguientes son algunos ejemplos para determinar si es que un número es primo o no:

EJEMPLOS

  • Determina si es que el 35 es primo

Respuesta: Los factores del 35 son 1, 5, 7, 35. El 35 tiene más de dos factores, por lo tanto no es primo.

  • Determina si es que el 37 es primo

Respuesta: Los factores del 37 son 1 y 37. El 37 tiene exactamente dos factores, por lo tanto sí es primo.

  • Determina si es que el 45 es primo

Respuesta: Los factores del 45 son 1, 3, 5, 9, 15, 45. El 45 tiene más de dos factores, por lo tanto no es primo.

  • Determina si es que el 41 es primo

Respuesta: Los factores del 41 son 1 y 41. El 41 tiene exactamente dos factores, por lo tanto sí es primo.


Preguntas frecuentes

¿Cómo puedo encontrar números primos?

Podemos determinar si es que un número es primo o no al dividirlo para 2, 3, 5, 7 y 11. Si es que no obtenemos un residuo al dividir por estos números, entonces el número no es primo.

¿Podemos tener números primos negativos?

No, no podemos tener números primos negativos. Una definición de los números primos es que los números primos son los números mayores que 1 que tienen exactamente dos factores.

¿Cuántos factores tiene un número primo en total ?

En total, un número primo tiene exactamente dos factores, sí mismo y el 1.

¿Cuál es el número primo más grande conocido?

El mayor número primo  conocido hasta noviembre del 2020 es el 282,589,933 − 1. Estos números son encontrados usando computadoras y métodos numéricos.


Véase también

¿Interesado en aprender más sobre números primos o expresiones algebraicas? Mira estas páginas:

Aprende matemáticas con nuestros recursos adicionales en varios temas diferentes

Conoce Más